pyoe package¶
Subpackages¶
- pyoe.OEBench package
- Subpackages
- Submodules
- pyoe.OEBench.arf module
- pyoe.OEBench.armnet module
- pyoe.OEBench.cluster module
- pyoe.OEBench.dataset_selection module
- pyoe.OEBench.entmax module
- pyoe.OEBench.ewc module
- pyoe.OEBench.experiments module
- pyoe.OEBench.layers module
- pyoe.OEBench.model module
- pyoe.OEBench.outliers module
- pyoe.OEBench.pipeline module
- pyoe.OEBench.stream_cluster module
- Module contents
- pyoe.algorithms package
- pyoe.dataloaders package
- Submodules
- pyoe.dataloaders.base module
BaseDataloader
BaseDataloader.get_data()
BaseDataloader.get_meter_dataset()
BaseDataloader.get_num_columns()
BaseDataloader.get_num_samples()
BaseDataloader.get_oebench_datasets()
BaseDataloader.get_oebench_representative_dataset()
BaseDataloader.get_output_dim()
BaseDataloader.get_target()
BaseDataloader.get_task()
Dataloader
DataloaderWrapper
TimeSeriesDataloader
- pyoe.dataloaders.pipeline module
- Module contents
- pyoe.metrics package
- pyoe.models package
- Submodules
- pyoe.models.models module
- pyoe.models.networks module
- Module contents
Submodules¶
pyoe.preprocessors module¶
- class pyoe.preprocessors.Preprocessor(missing_fill: Literal['knn', 'regression', 'avg', 'zero'] = 'zero')¶
Bases:
object
- fill(x: Tensor) Tensor ¶
This function fills missing values in a dataset
- Parameters:
x (torch.Tensor) – the input tensor with missing values.
- Returns:
the input tensor with missing values filled.
- Return type:
out (torch.Tensor)
- pyoe.preprocessors.fill_missing_value(window_x: Tensor, missing_fill: Literal['knn', 'regression', 'avg', 'zero']) Tensor ¶
this function provides a few methods to fill missing values in a dataset
- Parameters:
window_x (torch.Tensor) – the input tensor with missing values.
missing_fill (Literal["knn", "regression", "avg", "zero"]) – the method to fill missing values.
pyoe.utils module¶
- pyoe.utils.shingle(series: array, dim: int) array ¶
Takes a one dimensional series and shingles it into dim dimensions.
- Parameters:
series (np.array) – the input series.
dim (int) – the dimension of the shingled array.
- Returns:
the shingled array.
- Return type:
shingled (np.array)